今天给大家一个最全面的数据分析体系,涵盖了公司级全部场景。大家可以对着参照,看自己的发力点在哪里。整个体系可以概括为:一纵一横。话不多说,上干货!
一纵:从效果角度看工作
问一个简单而关键的问题:数据分析,到底有啥用?
答:站在业务的角度,数据分析有6大用处
1、目标制定:确定量化目标,分解下发目标
2、趋势预测:预测正常走势,提供决策参考
3、过程监控:监控业务发展,发现过程问题
4、结果复盘:复盘绩效表现,总结成果经验
5、原因分析:分析问题原因,探索解决方法
6、方法测试:测试优化方法,选择更优做法
(以上部分,建议熟读并背诵)
这六个场景,贯穿业务工作全过程,最能体现数据分析的价值。因此,当我们思考数据分析可以做什么的时候,可以先思考这六个场景,目前的工作满足了多少需求?还有哪些是可以做的(如下图)?
注意:数据并非不可替代!这6步即使没有数据,业务方也能做。
比如,经典的场景是:
1、目标制定,是老板授意财务整出来的。
2、趋势预测,是领导们拍脑袋拍出来的。
3、结果复盘,业务自己往自个脸上贴金。
4、方法测试,压根就不存在(老夫说是,丫就是!)
最有可能,只有过程监控,与发现问题以后的原因分析,是甩给数据分析做的。但这样的话,工作就太被动了。不清楚目标,不清楚业务基础走势,不清楚方法背后业务逻辑,光看一个数字是很难分析出原因的。因此相当多数据部门退化成只能监控个数据。甚至只能提个数。
这种被动局面,是在年初定规划的时候要尽力避免的。此时不争,更待何时!
此时可以:
这样做,就得认真研究企业内各部门分工情况,这就涉及到“一横”概念。
一横:从部门角度看机会
问一个简单的问题:是否各个部门对数据重视程度一样?
答:当然不一样!
从部门职责上看,部门可以分为四大类:
1、管理型。
典型如:总裁办、战略发展部、财务部。这些部门直接与公司最高层沟通,很多重大的发展计划,年度KPI目标,经营任务,都是这些部门参与制定的。这些部门很重视数据!
因为所有的目标、任务、计划都得量化。他们常见的问题是:知其然,不知其所以然,以财务部尤甚。算账算得很精明,可对于业务细节不甚了解。
此时,想要和这些部门交好,可以从提供基础数据突破。在提供数据的同时,主动帮他们梳理关键业务流程,清晰常规的业务基线,补齐他们在业务理解上的短板。这样能有更多机会合作。(如下图)。
2、收入型。
典型如:销售、投放、增长部门。这些部门负担主要的收入任务,是业绩、利润的主要来源。但是,这些部门一般都不重视数据。能看到任务目标、完成率就差不多了。他们更喜欢看案例拆解,看操作指南,看具体做法。总之,手里用得上的才是好东西。
此时,想要和这些部门交好,可以从工具入手。不要整复杂的报表,而是根据看表人关心的内容,分层级提供数据。越是基层的,给看的数据越少,最好只留关键KPI。功能上,和CRM等工具打通,在提供数据的同时,直接提供可操作功能,这样才受一线欢迎(如下图)。
3、成本型。
典型如采购、研发、设计。这些部门基本都在消耗成本,很难直接见成效,万一做不好了引发用户讨厌、产品积压、库存不足,还会影响销量……而且,这些部门又受到销售、营销营销,很难独善其身。
这时候要区别对待:
对于采购、生产、供应这种容易产生硬损失的部门,重点做好数据滚动预测与数据监控。对于来自上游供给、下游需求、大促活动等影响因素及时收集,结合供给进度与库存情况,预报可能存在的积压/缺货问题(如下图)。
对于研发、设计、产品这种容易产生软损失的部门,重点最好测试平台和测试服务。用常规监测发现问题,用好的测试来检验改善效果(如下图)。
4、混合型。
典型如营销、运营部门。这些部门很喜欢看数据,且其工作效果,是叠加在销售基础上产生的,很难观察。因此做分析的时候特别纠结。好在,他们的工作多是项目制的,可以逐个攻破。
这些在之前的文章已经有很多分享,这里就不赘述了。想洞察得深刻,想分析得到位,重点是培养业务部门的好习惯,打好数据基础。
基础工作做好了,事后大量数据可以分析
基础工作没做好,事后分析个屁……
整体安排:分阶段,做出标杆项目
注意:上述的工作,在业务部门那里是有先后顺序的。
清晰了业务部门行动以后,数据部门的整体安排就很清晰了:
输出的目标,以每个月都能有一个项目上线/更新为目标。这样每个季度的季报容易写,来年年度总结也就不纠结了(如下图)。
以上,就是数据部门规划的整体思路。当然每个企业具体情况不同。同学们可以量体裁衣,根据自己面对具体情况做调整。